

Our Journey So far…

2004 - 1st Expansion of Continuous Spinning Machines & Indian Rayon became a unit of **ABNL**

CSY & PP Expansion

2006

2006- 2nd Expansion of CSY Machines & erection of 18.5 **MW Captive Power Plant**

Continuous Progress

2021-20.0 MW Turbine **2022-**CSY-4 12 M/C expansion 2023- SWRO and 3 SSY m/c (U/P)

21.2 KTPA

23 KTPA

2019-22

10.5 KTPA

1987

3.7 KTPA

1963-1966

1956-1959

Reawaken

1963- Commercial production started

Acquisition

1966- Acquired by Aditya Birla Group

1987-Indian Rayon Corporation renamed as Indian Rayon and Industries Ltd.

Backward Integration

1996-1998

15.6 KTPA

2000-2004

1996- Installed 16.5 **MW Captive Power Plant 1997-** Installed 100 TPD Caustic Soda. 1998-Installed Continuous Spinning Machines (CSY).

Expansion

2008-2017

2008- 1st Expansion of Caustic Soda Plant (up to 250 TPD)

2009- 6 Nos. PSY Machines commissioned

2012- 66 KV 12 MVA Power Grid Connection

2013- SSY Expansion with capacity 5.5 TPD

2014 - CSY Expansion of 7 M/Cs

2015- SSY Expansion with indigenous M/C

2015- CSY Prototype M/C development

2015-18 SSY Expansion : 21 M/Cs

commissioned bringing total capacity to 13.5 TPD

2017- Merger of ABNL with Grasim

Establishment

1956- IR Incorporated as a producer of Pot Spun VFY with 4 TPD capacity

1959- Foundation stone laid by Late Sh. Lal Bahadur Shastri

Process Flow

Soft Wood Pulp

Transformation of wood pulp into Liquid Viscose for re-generation in the Spinning

Regeneration of Yarn

Yarn formation through mixing of Viscose & Spinbath

Spinning

Coning & **Packing**

Winding & package formation as per customer needs & packing

Textile

Weaving at the customer end, then transfer to retail user

Yarn Washing

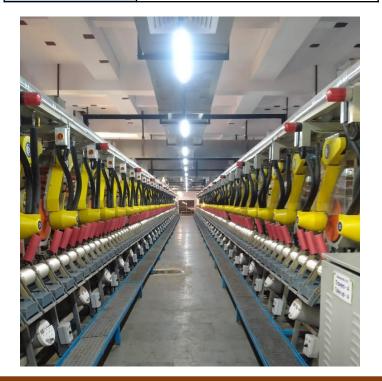
After Treatment

Washing of Yarn packages to remove residuals of acids from Spinning process.

Retail Customer

Weaving

VFY Manufacturing Technology


PSY

No. of machines	94.2 (19H+75V+0.2 Pilot)
Production	43.0 TPD
Product Range	Bright, Dope Dyed, Dull finish yarn, High denier per filament yarn
Denier	60-1200

CSY

No. of machines	36.5 (Sanico:22,Himson:09, Handan-5.5, Pilot:01)
Production	6.5 TPD
Product Range	Bright, Dope Dyed, Dull finish yarn
Denier	20-300

SSY

No. of machines	61+1 Pilot Machine
Production	13.5 TPD
Product Range	Bright
Denier	20-120

Integrated operations and Major Product

Product	Capacity	Uses
VFY	63.0 TPD	Textile Apparel , Satin, Sarees
Sodium Sulphate	37.8 TPD	Dye, Organic Chemical
Sulfuric Acid (H ₂ SO ₄)	105 TPD	Captive for VFY
Carbon di Sulphide	27.4 TPD	Captive for VFY
Captive Power Plant	42.0 MW	Captive (VFY + Caustic)
Caustic	250 TPD	In process, Dye, Detergent Chemical

Pulp (Outside)

Zinc (Outside)

Viscose

Filament

Caustic (100%)

Power (100%)

Provides different yarn types suitable for specific applications across a particular denier range

Pot Spun Yarn (PSY)

60Denier to 1200Denier

IR - Veraval

Technologies

Manufacturing

CR-Kalyan

- Zero Shrinkage
- Wider Applications

Continuous Spun Yarn (CSY)

20Denier to 300Denier

IR - Veraval

CR-Kalyan

- > Higher Shrinkage
- Higher Tenacity

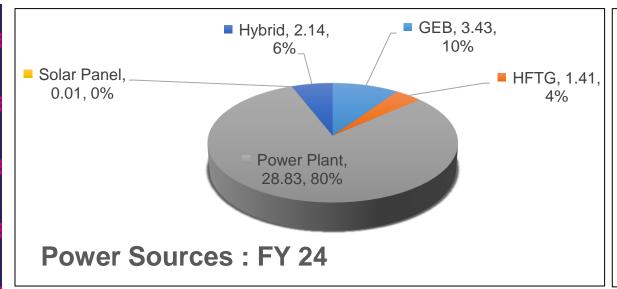
Spool Spun Yarn (SSY)

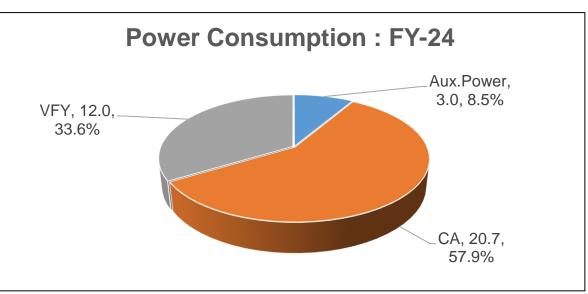
20Denier to 120Denier

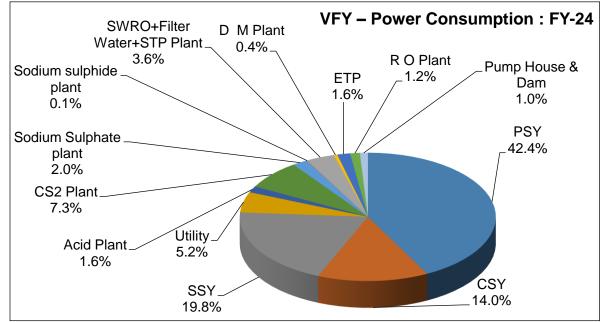
IR - Veraval

- Zero Shrinkage
- Better Uniformity
- Higher Tenacity

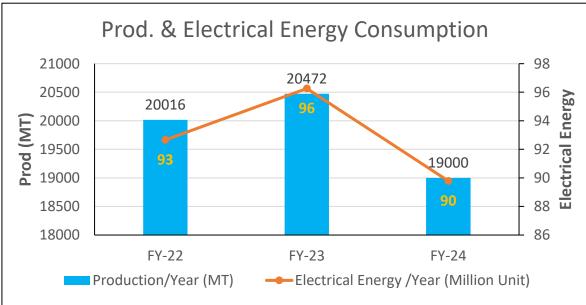
Management Systems

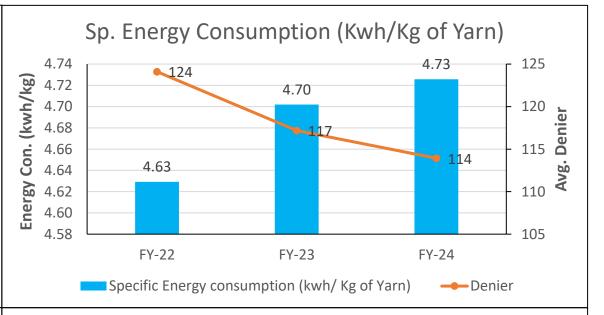


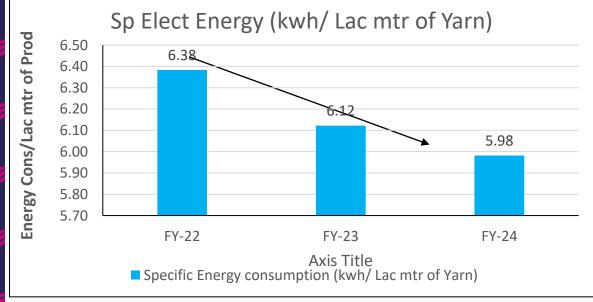

#	Management System	Version	Certifying Agency	Issued On (Initial issue)	Validity
1	ISO 9001:2015 (Quality Management System – "QMS")	2015	TUV-NORD	29/05/2022 (29.08.2003)	28/05/2025
2	ISO 14001:2015 (Environment Management System – "EMS")	2015	TUV-NORD	29/05/2022 (27.04.2005)	28/05/2025
3	ISO 45001:2018 (Occupational Health & Safety)	2018	TUV-NORD	29/05/2022 (28.04.2004)	28/05/2025
4	SA 8000:2014 (Social Accountability – "SA")	2014	TUV-NORD	19.01.2023 (30.11.2007)	30/11/2025
5	ISO 50001:2011 (Energy Management System)	2018	TUV-NORD	29/05/2022 (11.06.2015)	28/05/2025
6	Oeko Tex Standard 100 Class – 1 (Product Certificate)	-	Shirley Technology -UK	Jan-23	24/01/2024
7	FSC – COC (Chain of custody)	2017	SGS	18.09.2019	Sept'2024
8	Canopy Style (Green Shirt)	2020	-	-	-
9	Inditex Social Audit	2021	-	Social Audit	-
10	Higg Index	2021	Intertek	Third party verification	-
11	ISO/IEC 17025:2017	2017	NABL	26/07/2022	25/07/2024
12	ISO 27001:2013	2013	TUV-NORD	29/05/2022	28/05/2025



Energy Profile

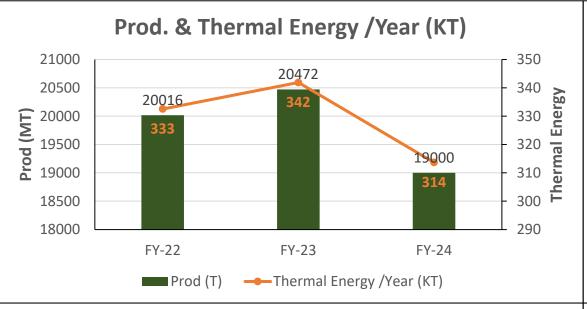


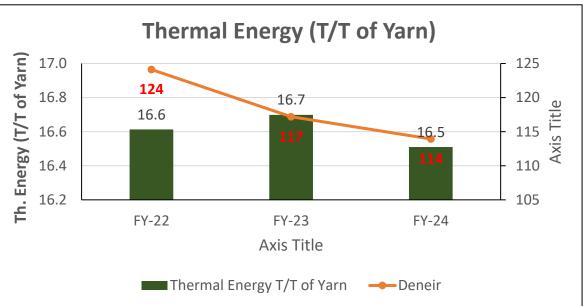

- Overall power consumption is 36-37 MW
- 84% is our own generation and 16% is from GEB
- In Jun'2023 business has started purchase of hybrid 7.2 MW renewable energy (3.5 MW from Solar generation & 3.5 MW from wind Energy) from Aditya Birla Renewable Pvt. Ltd.
- This has a potential to increase the share of renewable energy source

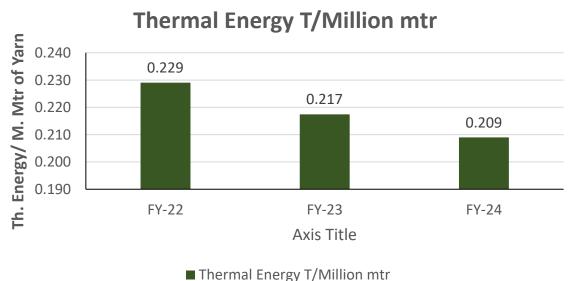


Overall Energy Consumptions: Electrical

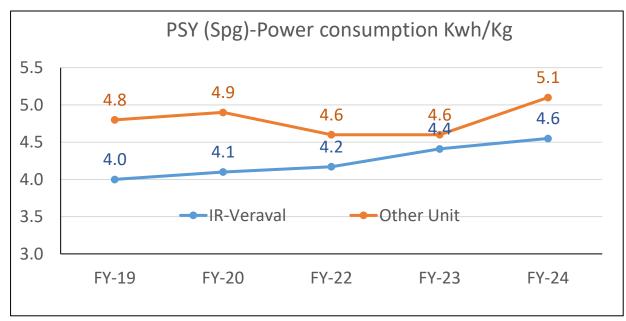
- Specific energy consumption in terms of Kwh/Kg is appearing increased, but it is due to reduction in Denier as well as PSY plant run at 76% capacity in FY-24
- If Denier is reduced, the production in Mass will also reduced while running the plant at same capacity


The third graph shows the energy consumption based on length:


- In FY-24 Electrical energy consumption has reduced by ~
 6.30%
- Savings is the results of various energy saving initiatives which will be explained in corresponding slides



Overall Energy Consumptions: Thermal



Thermal energy has also reduced by \sim 8.80% as compared to FY-22 by taking various energy saving initiatives which will be explained in corresponding slides

Benchmarking

- The Major competitors for Grasim is Chinese suppliers, the energy data from oversees competitors are not available
- Grasim having two business units Veraval and Kalyan
- Benchmarking with our other business units
- Identified the opportunity on process level
- We are also benchmarking our energy intensity with PAT (Perform Achieve and Trade) baseline and target data of similar type of industry notified as designated consumer

Plant	E-Certificate allotted			Sold			Balance		
	PAT-1	PAT-2	Total	PAT-1	PAT-2	Total	PAT-1	PAT-2	Total
VFY	0	103	103	0	22	22	0	81	81
CA	1985	2936	4921	1071	0	1071	914	2936	3850
Total	1985	3039	5024	1071	22	1093	914	3017	3931

Short Term and Long Term Targets

Sustainability Target							
Goal 1 – Safety	Reduce LTIFR below 80% by 2025 (over the base year of FY17)						
Goal 2 – Water	Reduce specific freshwater consumption of the main product by 30% by FY25 (over the base year of FY17); all units to be ZLD in water stressed area by FY25.						
Goal 3 – Carbon Emission	Reduce GHG emission of the main product by 30% by 2030 (over the base year of FY17) by utilizing energy-efficient technologies, improving operational efficiencies, and increasing the share of renewable energy and other energy initiatives.						
Goal 4 -Diversity and Inclusion	Increase woman employees in Management Cadre by three times (over the base year of FY19) to FY25.						
Goal 5 – Employees Engagement	100% of employees to receive Code of Ethics training; Minimum 1 training day per employee per year						
Goal 6 – Community Development	100% of our facilities to participate in community engagement.						

Additional Goals						
Goal 1 – Waste and Circularity Sludge reduction, recycling of solid waste, zero waste to landfill being ultimate objective						
Goal 2 – Water	Increasing recycling of water, new rain water harvesting measures, recharge of community or local wells towards water positive					
Goal 3 – Carbon Emission	Possible replacement of coal in package boiler with bio-fuel, usage of bio-fuel in DG sets, other PAT 7/CCTS related energy/emission measures					
Goal 4 -Social Accountability and human rights	Strengthening/Roll out of SA8000, deployment of human rights due diligence tools to cover contractors and other partners					

List of Major Encon Project 24-25

VFY energy savi	ing Pro	jects f	or 2024-25

Sr. No	Plant	Suggested Measures	Annual Savings (Lac KWH)	Annual Steam Saving (Tons)	Annual Savings (Lac. Rs)	Investmen t (Lac Rs)	Payback in years	Remarks
1	Acid plant	Energy efficient heat recovery system for acid cooling requirement	0.00	6388.23	134.0	113.0	0.8	Capex
2	CS ₂ Plant	Improvement waste heat recovery boiler performance by efficient condensate & flash steam recovery	0.00	1423.5	29.9	45.8	1.5	Capex
3	PSY - AT	Improvement in steam condensate hookup for washing station.	0.00	1008.13	21.2	16.9	0.8	Capex
4	PSY - AT	Improvement in steam & condensate system for dryers - better capacity utilization & heat optimizations.	0.00	903.74	19.0	91.3	4.8	Capex
5	PSY & CSY	Chilled Water Pump	0.79	0	5.8	18	3.1	Capex
6	PSY & CSY	Water Filter Pump	1.44	0	10.5	5.6	0.5	Opex
7	PSY & CSY	Air Compressor	0.76	0	5.5	20.0	3.6	Сарех
8	PSY & CSY	Maintenance of Reynold brine chiller	1.2	0	8.7	2.0	0.2	Opex
9	PSY & CSY	Install PP blowers/axial fan instead of SS Centrifugal blowers at exhaust units	0.31	0	2.3	12.0	5.3	Capex
10	PSY & CSY	PSY Textile Air Washer modification	0.00	800	16.8	40.0	2.4	Capex ₁₂

List of Major Encon Project 24-25

	VFY energy saving Projects for 2024-25									
Sr. No	Plant	Suggested Measures	Annual Savings (Lac KWH)	Annual Steam Saving (Tons)	Annual Savings (Lac. Rs)	Investmen t (Lac Rs)	Payback in years	Remarks		
11	PSY & CSY	PSY Textile Air Washer modification	1.54	360	18.8	50.0	2.7	Capex		
12	PSY & CSY CSY-2&3 Air Washer modification		3.23	860	41.6	175.0	4.2	Capex		
13	SSY	Replacing impeller	3.01	0.00	21.91	5.20	0.2			
14	SSY	Air Compressor	1.32	0	9.6	28.0	2.9	Capex		
15	SSY	Installation of energy-efficient motors	0.75	0	5.4	29.0	5.3	Capex		
16 SSY EC fan for AHU system(UPS, Spinning, Viscose)		0.44	0	3.2	34.4	10.8	Capex			
17	SSY	SSY Replacement of Energy efficient cooling tower fan		0	2.4	14.2	5.8	Сарех		
18 SSY EC fan for Air washer system textile 1st floor			1.00	0	7.3	24.0	3.3	Capex		
		TOTAL SAVING - VFY	16.12	11744	364	724	1.99			

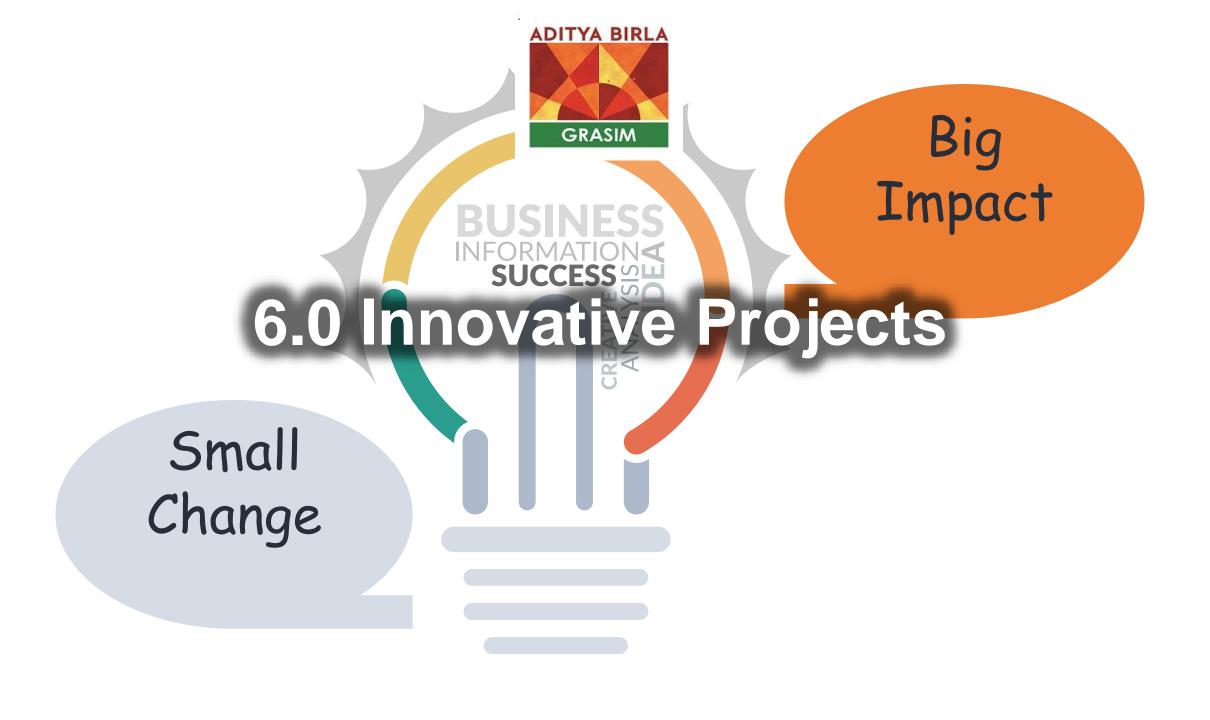
- Total 18 EnCon project identified for FY-25
- Total Energy saving 16.12 Lacs unit of power and 11744 T of Steam.
- Expected saving 364.0 Lacs, investment 724.0 Lacs and pay back period is 2.0

5.0 Energy Saving Projects

Energy Saving Projects:

Year	No. of Energy Saving Project	Investment (INR Million)	Electrical Energy Saving Annually (Million KWh)	Thermal Energy saving (m KCal/annually)	Saving (INR Million)	Pay Back Period (Month)
FY 21-22	4	5.953	0.275	0	1.451	49
FY 22-23	17	18.28	2.117	0	17.454	13
FY 23-24	16	25.49	2.237	5801	30.39	10

Year	Name of Energy Saving Project	Investment (INR Million)	Electrical Energy Saving Annually (Million KWh)	Thermal Energy saving (m KCal/annually)	Saving (INR Million)	Pay Back Period (Month)
FY 21-22	Installation of energy efficient LED based lighting in plant	2.000	0.153	0	0.77	31
FY 21-22	Energy efficient pot motor rewinding in spinning machines	0.243	0.0016	0	0.07	37
FY 21-22	Energy efficient transformer replaced in spinning machines		0.079	0	0.395	75


Energy Saving Projects:

Year	Name of Energy Saving Project Investment (INR Million) Electrical Energy Saving Annually (Million KWh) Thermal Energy saving (mKCal/annually)				Saving (INR Million)	Pay Back Period (Month)
FY 22-23	Airwasher chiller optimization by close loop air circulation	0	0.664	0	5.64	0
FY 22-23	Old Voltas make caustic chiller replacement with new Refcon make chiller	6.39	0.331	0	2.654	29
FY 22-23	Replacement of old and inefficient motor with energy efficient motor	6.35	0.281	0	2.253	34
FY 23-24	CSY-1 modification in Airwasher system	10.348	2.38	0	2.027	61
FY 23-24	Reduction in Twist of TFO twister from 90 TPM to 60 TPM	0.25	1.32	0	8.88	1
FY 23-24	Steam line insulation	3.68	0	2206	5.2	9

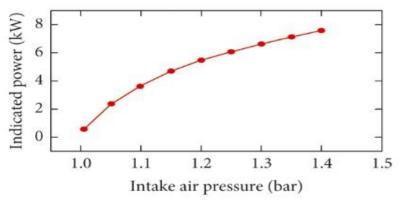
Process to identify improvement opportunities:

- Daily Energy Monitoring System and Yearly energy performance review
- External energy audit. In 2021 mandatory energy audit was done and in year 2023 two separate audit for Electricity and steam were done.
- Regulatory requirements
- Various suggestion scheme
- Best practices from the other business units etc.

Innovative Projects

1- Installation of Air cooled two stage air compressor: Implemented 2022-23

Rationale / Desired change:

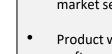

As the relationship shows, intake air pressure increase lead to increase the power consumption, two stage air compressor power consumption is much lower than the single stage, hence the compressor has changed to achieve the power consumption per CFM.

Project Description:

The power consumed by air compressor was 3800 kwh /day. it was water cooled single stage compressor. it was consumed high power in SSY utility equipment. we studied and called a vendor at our site for reducing power consumption. After site visit and discussion with vendor. He has suggested us air cooled air compressor which takes less power compare to water cooled compressor. After discussion with senior team members and finally management approved our capex scheme for air cooled two stage air compressors.

Outcome:

The previous power consumption was 3800 kwh/day in water cooled air compressor and installed the new air cooled Air compressors which take 2900 kwh/days so power saving is 900 kwh/day. Annually cost saving **Rs. 23.91 lacs.**



Innovative Projects

2- Project Titles: Enhancing Textile Production Efficiency: Optimizing Yarn Specifications and Machinery

Operations: Implemented: 2023-24

- 50 Denier was identified for market seeding with 60 tpm.
- Product was going in twisting for weft segment.
- Product was running on 3 spinning machines and entire product was converted with 60 tpm for comprehensive feedback.

- 60 denier product was added with 60 tpm for extended customer feedback.
- 10 Mt of 60 tpm product was produced in 40 denier and evaluated at customer end.
- With comparable performance the production of 60 tpm gradually increased in 40 denier and completed by Feb-24.

Tangible Benefits : -

- Power consumption reduced by 25%
- ✓ TFO Productivity increased by 22 %
- TFO reduced from 102 nos. to 95 nos.
- 107.85 lacs / annum saving in power cost.

IDEA

end.

TRIAL INITIATION

Market feedback

- Evaluation of performance of 60 tpm vs 90 tpm at Plant level & customer level.
- Comparable performance observed at Plant level as well as at customer end.

STRATEGY

CURRENT STATUS

 Entire SSY product range except sizing products are running with 60 tpm.

• Entire PSY comes in 50-60 TPM

Twist is imparted in varn to

facilitate unwinding at customer's

- Discussed & finalize to take trial with 60 tpm from 90 tpm
- M/c productivity will increase by 22%.
- The TFO conversion from 90 tpm to 60 tpm involves change of gear set in TFO gear box.

Power Saving calculation :-

- ✓ Power consumption per TFO at 90 TPM @ 105 MPM ~132 kwh/Day
 ✓ Power Consumption per TFO at 60 TPM @ 130 MPM ~ 99 Kwh /Day
- Power Consumption per 1FO at 60 1PM @ 130 MPM * 99 KWn /D
- ✓ Number of TFO's with 60 tpm
- Power saving stopped X 132 + No of twister with 60 tpm X 33

: 7 X 132 + 95 X 33

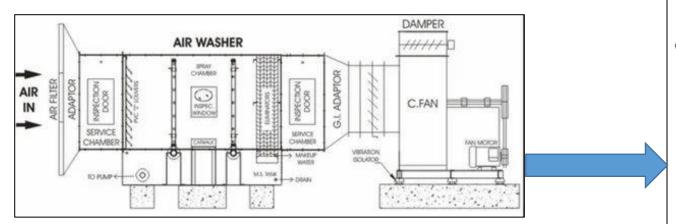
: 4059 Kwh/day

: 107.85 Lacs/ annum (@ 7.28/Rs per unit)

Replicability: Yes, it can be based on the application, textile units can evaluate

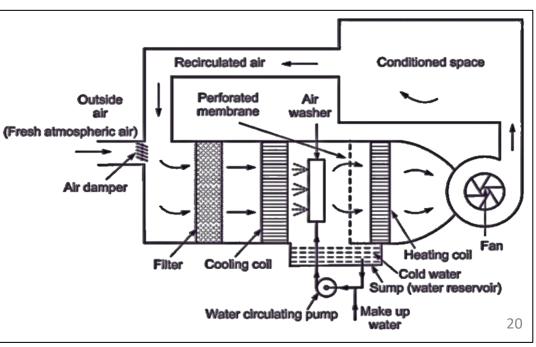
: No of twister

Innovative Projects


3- Utility power optimization: Implemented 2022-23

Rationale / Desired change:

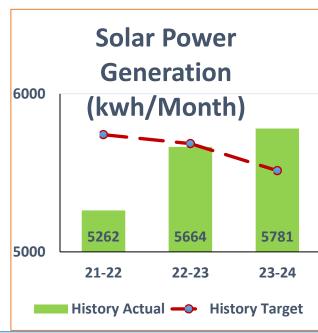
The absolute power consumption of SSY plant varies from ~56000 KWH/day to ~66000 KWH/day across the year due to seasonal influence. The major energy intensive areas in plant are, Utilities and Textiles, where around 45-50% of total power is consumed, so during the energy review , utility area was identified as an opportunity for improvement


Action identified and implemented:

- Study of textile hall conditioning
- Recirculating the hall air in Air Washers in place of fresh air based on ambient conditions.
- Insulating the air washer discharge duct at both the floors.
- Replacement of air washer spray nozzles with new nozzles

Total power Saving:

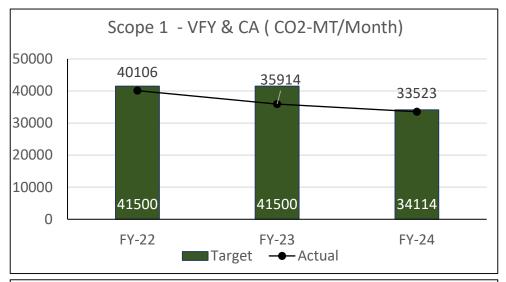
- 2387 kwh/day
- Annual Saving : 61.0 Lakhs @ 7.0/kwh

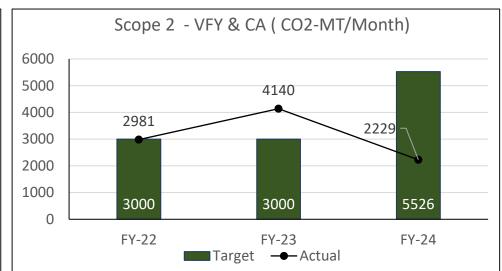

Offsite)

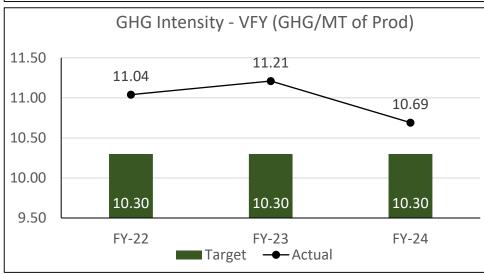
Year	Source (Solar, wind, etc.,)	Installed capacity (in MW)	Capacity addition (MW) after FY 2021	Total Generation (million kWh)	Share % w.r.t to overall energy consumption
FY 21-22	Solar	0.05	0	0.05	0.027
FY 22-23	Solar	0.05	0	0.06	0.025
FY 23-24	Solar	0.05	0	0.07	0.022

Year	Source (Solar, wind, etc.,)	Total off site Installed capacity (in MW)	Capacity addition (MW) after FY 2021	Total Generation (million kWh)	Share % w.r.t to overall energy consumption
FY 21-22	0	0	0	0	0
FY 22-23	0	0	0	0	0
FY 23-24	Hybrid (Solar + Wind)	7.2	7.2	18.83	6.0

- Include total RE share (Onsite + Offsite) w.r.t total consumption : 6.02%
- RPO Obligation, if any- please mention: 5.0% of total consumption


Business has started purchase of hybrid 7.20 MW renewable energy (3.6 MW from each Solar & wind Energy) from Aditya Birla Renewable Pvt Ltd. reducing the conventional energy and carbon emissions from the unit from Jun'23 onwards




GHG Inventories

Scope-3 data capturing is started from FY-23 FY 22-23 Scope-3 GHG Emission for CFY: 40392.38 T CO2/Annum, the process is under validation for FY-24

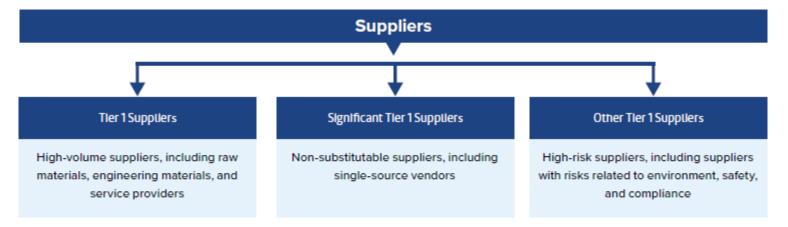
- GHG Inventorisation: Maintaining GHG inventory for Scope 1 Emission (All fuels consumed and owned by our unit), Scope 2 Emission (Non-renewable GRID Electricity Purchased) and Scope 3 Emission (Upstream and downstream Value chain).
- Public disclosure: The unit is disclosing data publically at the Grasim Level in an integrated sustainability reporting.
- Scope 1 and Scope 2 Emission are in accordance to the GRI framework
- Scope 3 Emission are disclosed in accordance to Carbon Disclosure Project (CDP)
- Competitor data is not available

Action plan to reduce GHG emissions

- Third party limited assurance for GRI indicators (305-1- Direct GHG emission (Scope 1); 305-2- Indirect GHG emissions (Scope 2); 305-3- Other Indirect GHG emissions (Scope 3) and BRSR principle (BRSR Principle 6-E6) was done for FY23
- Our group has undertaken the target to achieve Net Zero by FY50. Carbon footprint reduction (amount of greenhouse gas emissions that are avoided or reduced) as a result of implementing energy efficiency measures or using renewable energy sources is tracked with respect to base line carbon foot print as it is a key indicator our environmental performance and our commitment to sustainability
- Using of biomass in boilers and increasing the consumption of renewable energy
- Energy performance improvement projects on regular basis

Roadmap from 2025-27

Year	Planned Measures	Investment (Lac Rs)	Investment (Lac Rs) Annual Power Saving (Lac Kwh)		Annual Savings Lac Rs
FY25	24	724.37	16.12	11744	363.7
FY26	11	129.00	6.79	0.00	49.4
FY27	7	436.77	11.80	0.00	85.9
Grand Total	42.0	1290.0	34.71	11744.0	499.1



Green Supply chain Management:

Supplier assessments incorporating environmental and social considerations are undertaken annually, either by an independent third party through on-site visits, or internally through online surveys to thoroughly evaluate and identify key supply chain partners. Our suppliers are categorised as follows:

Supplier ESG Programme

We have developed and implemented a comprehensive ESG programme to enhance the sustainability of our value chain partners. We ensure the alignment of purchasing practices with the Grasim's Supplier Code of Conduct to avoid potential conflicts with ESG requirements. We hold regular workshops and provide technical support to build capacity around key ESG areas such as social issues and human rights, environmental stewardship and decarbonisation, and diversity and inclusion. Our training sessions aim to enhance the performance of our partners, with continuous feedback gathered to address their concerns promptly.

Policy and Initiative

SUPPLY CHAIN MANAGEMENT POLICY

Grasim Industries Limited, Unit-Indian Rayon (IR) is committed to build a Sustainable Supply Chain for the growth and sustenance of businesses, develop a strong relationship with suppliers and build their capabilities to improve the Supply Chain performance. We shall endeavor to work with suppliers on improving their process and practices to attain and maintain a Sustainable, robust and viable Supply Chain.

Indian Rayon, Veraval endeavors to achieve this by:

- Carry out responsible procurement with Integrity, Respect and maintain high Ethical standards
- · Comply with all applicable legal requirements within the supply chain
- Create a supply chain that is resilient and viable in presence of risks and opportunities
- Promote resource conservation, use of alternative materials and renewable energy, water stewardship, safety, health, respect for human rights and elimination of child and forced labour across the supply chain
- Build capability within the supply chain and work towards creating best in class supply chain solutions
- Adhere to the principle of traceability to the origin of materials throughout the supply chain
- Influence suppliers to adopt our supply chain management's sustainability framework
 policies and standard and encourage them to develop an equivalent management system
 throughout the supply and value chain
- Actively communicate and disclose our approach and achievements to suppliers

This policy will be reviewed periodically for its suitability and updated as necessary.

Shashank Pareek Unit – Head

Date: 01-12-2020

- Green supply chain concept occurs to mitigate environmental degradations and control air, water and waste pollution through the adoption of green practices in business operations.
- Application of environmental management principles to the entire set of activities across the whole customer order cycle, including, design, procurement, manufacturing and assembly, packaging, logistics and distribution.
- Integrating environmental thinking into supply chain management, including ecological design of products, purchasing green materials and components, reengineering of manufacturing steps towards eco-friendly, reverse logistics management of the product after its useful life.
- Integrating environmental consideration into company's supply chain including reverse logistics.
- In this context our Company is working with logistic partners for Reducing Scope-3 GHG emission related to Goods Receipt, Goods Sold and Waste disposal. Company is taking steps to choose suppliers in proximity and also creating base of preferential customers in vicinity. Thus, it can be controlling the harmful impacts of supply chain on the environment.
- We adhere to globally recognized standards such as FSC for sourcing wood pulp from sustainable managed forest

10.0 EMS System and other requirement

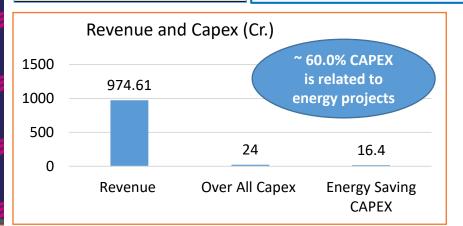


Monitoring and Review Systems

Grasim Industries limited (Unit: Indian Rayon) 18-08-24 **DEPARTMENT WISE POWER CONSUMPTION** Time: From 00.00 AM to 00.00 AM next day (A) PSY Plant **Power Consumption** Sr. No. Department Diff. KW 18-08-24 17-08-24 14752 607 (1) Viscose 14558 -194 -1% (2) 13489 2% 575 Spin Bath 13804 315 (3) 2955 Spinning 70909 70411 498 1% 567 (4) After Treatment 13599 13281 318 2% (5) Textile 8% 3871 3586 285 161 (6) ATY 0 0 0% Engine Room 17953 17622 748 (8) 9155 3% 393 Exhaust Fan 9436 281 (9) Airwasher 10123 10136 -12 0% 422 5205 6179 -974 -16% Main Plant Lighting 217

		To	otal o	of Mai	n Pla	nt			1594	58	1	58610		848		1%	(644
Grasim Industries Ltd. Unit: Indian Rayon Veraval Monthly Report Page										2024-25 SSY July '24 Page 14								
							St	eam Ra	tio (MT	/MT)								
	22-23 History A History T		24	Apr-24	May-24	Jun-24		Aug-24	Sep-24	Oct-24 Revised ta	Nov-24	Dec-24	Jan-25	Feb-25	Mar-25	YTD 23-24		YTD Tgt 24-25
	21-22	22-23	23-24	Apr-24	May-24	Jun-24	Jul-24	Aug-24	Sep-24	Oct-24	Nov-24	Dec-24	Jan-25	Feb-25	Mar-25	YTD 23-24	YTD 24-25	YTD Tgt 24-25
History Target History Actual	14.83	14.23	14.26 14.26	13.33	13.33	13.33 13.54	13.64 13.85	13.85 13.69	13.75 13.00	14.39 13.30	15.57 14.75	16.00 15.25	16.00 15.62	14.28 15.13	13.65 15.00			
Actual	14.02	17.66	74.20	13.76	12.92	12.65	12.96	10.00	10.00	10.00	14.73	10.23	10.02	10.13	10.00			
Budgeted Target				13.63	13.63	13.63	13.95	14.17	14.06	14.73	15.94	16.38	16.38	14.61	13.96			
YTD				13.76	13.34	13.11	13.07									14.26	13.07	14.59
Revised target																		

- Process wise / equipment wise measurement system is in placed
- Daily dash board of energy Generation, process wise consumption
- It is reviewed on daily meeting with comparing to previous day and target
- Monthly review by senior management
- Any deviations in consumption pattern are analyzed


EMS and Some Certificates towards Green Co...

ISO 50001

ZDHC contributors

Third party Higg Index assessment

FSC certificate for Pulp procurement

OEKO-TEX Class-I product certification

REACH Compliance

Canopy style- Hot button shirt designation

Learning from CII and other sources

S.No	Source of Learning	Learning
1	CII	 Reviving the Boiler water treatment to improve quality & reduce cost. Refurbishing existing flange joint valves by weld end valves to prevent frequent breakdowns. Installation of venti light pipe in new TG building
2	CMAI - Carbon Markets Associations of India	Identify de-carbonisation projects, its viability, financing & trading
3	NTPC - Green Hydrogen usage	Energy security, Hydrogen usage for green mobility, Methanol blending
4	Godavari Power & steel - ARTIST concept for encon	A-Awareness, R-Raw material cheap raw material, T-Technology green steel I-Innovation, S-Specific consumption, T-Top driven approach
5	Janitza & Sonel India Measurement instruments manufacturer	EMS system Residual current monitoring Power quality analyzer & Controller
6	Yaskawa - Drives & Robotics	 ASPIRE bilateral tech programme between India & UK, for de- carbonization technology exchange Use of pipe lights, EC fans for HVAC & AHU Use waste heat recovery from centrifugal compressor
7	ISHRAE - HVAC	 Good building design - effectively reduce HVAC energy consumption Three stage cooling & acdiabatic cooling for energy saving. AHU's fan overall efficiency around 60% which can be improved by EC fans with higher efficiency of 85%
8	IOT-Infosys	 Solar power IOT solar monitoring Smart solution for water management Solar robot for solar panel cleaning

Net Zero Commitment

Net Zero Vision

We aim to achieve net zero emissions by FY 2049-50, aligning with the Science Based Targets initiative (SBTi). Our strategic roadmap outlines the necessary steps and financial commitments to achieve reach this goal. By adhering to this detailed roadmap, we commit to implementing scientifically grounded and measurable targets that align with the goals of the Paris Agreement. We are also investing in research and development, leveraging our technical expertise, and collaborating with stakeholders to drive innovation and accelerate the transition to a low-carbon future.

PATH TO NET ZERO

NET ZERO BY FY 2049-50

Renewable Energy

Renewable capacity installation and renewable energy procurement through open access

So

Wind

Hybrid

Alternate Fuels

Bio-fuel mix with fossil fuel for energy and steam generation

Bio-mass mix | Biodiesel mix

Electrification

Replace traditional fossil fuel powered equipment and processes with electric alternatives

Initiative towards sustainability:

- Energy Conservation Breakthrough: Cellulosic Fashion Yarn unit in Veraval has made remarkable strides in energy conservation. The implementation of Frigitech solutions, has not only reduced energy consumption but also improved the overall efficiency of chilling processes.
- Water Security and Innovation: The commissioning of the 12 MLD SWRO plant is a ground breaking achievement. This state-of-the-art facility demonstrates our proactive approach to addressing water scarcity challenges and securing a sustainable water supply for our operations.
- 3. Renewable Energy Adoption and Carbon Reduction: Our unit's commitment to reducing carbon footprint is evident in the adoption of renewable energy sources. The utilization of biomass fuel at our Veraval captive power plant, along with the sourcing of 17.27 Mn Units of renewable power, demonstrates our leadership in sustainable energy practices.
- 4. Empowering Communities: The CSR initiatives reflect our commitment to giving back to the community. The water conservation efforts, support for organic farming, and women's empowerment programs have made a tangible difference in the lives of people in and around Veraval

12.0 Other Information

Awareness on energy

Energy badge to aware all

Energy Oath

Walkthrough to identify

Plantation

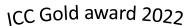
Energy Conservation Quiz

Slogan and poster competition

Through Energy & Carbon emission subcommittee :

- Energy champions are nominated
- Various awareness programs are conducted.
- On energy conservation day every year theme based competitions and quiz are arranged
- Winners are awarded in our Mass Communication meeting.
 - Every Energy & carbon emission meeting starts with sharing of Energy Contacts

Reward and Recognition



Reward and Recognition

Energy Saving champion award-2023

Discussions